从Contax Zeiss Planar T* 50/1.7看蔡司

posted in: 原创, 推荐, 摄影, 数码 | 0

Contax Zeiss Planar T* 1.7/50

  虽然不知道各大小摄影论坛上用蔡司镜头拍摄的照片有多少后期成分,但还是对这些照片的色彩和锐度赞叹不已。于是,作为一名普通摄影平民,为了感受下德国镜头的魅力,体验下什么是所谓的“德味”,而又囊中羞涩,徕卡之类的是不敢奢望,于是淘了个平价的蔡司镜头Contax Zeiss Planar T* 1.7/50 MMJ。这是早年蔡司为Contax机身设计的镜头,基本上都是日本制造,听说也有德国制造的。作为哈苏实验室19支最佳镜头之一,1600左右的二手价还是相当不错。当然,因为是Y/C接口,所以接到佳能尼康机身都需要转接环,也可以改口。笔者买了个最便宜的60元的接环,发现转接450D没有问题,无限远对焦也正常。还有200-300的转接环,没试过,自己觉得足够用就行了。

  镜片结构:

Contax Zeiss Planar T* 1.7/50镜片结构图

  MTF图:

Contax Zeiss Planar T* 1.7/50 MTF图

康泰时

  蔡司于1932年开始生产康泰时(Contax)品牌的旁轴相机。两德分离后,西德的蔡司 AG继续生产康泰时品牌的旁轴相机,而东德的蔡司·耶拿则将此品牌使用在单反相机上。

  西德的康泰时相机停产于1961年,东德后来把这个品牌改名为潘太康(Pentacon)。

  1971年,西德的蔡司 AG将康泰时品牌授权给日本的京瓷集团(Kyocera)的八洲光学(Yashica)。京瓷基于自身既有的技术,更发展出Contax 645 / Contax / Yashica Mount(c/y卡口) / N Mount(N卡口)等各种不同的卡口系统,之后更推出全世界第一台135底片的全画幅数码单反Contax N Digital。

  2004年,京瓷集团宣布缩减数码相机业务,并与2005年9月再度终止康泰时的业务。

 

T*镀膜

T*镀膜

  关于T*镀膜的介绍,中文网页中有介绍的很少,整个摄影论坛只是充斥着各类作品,真正讲诉一张照片背后故事的太少太少,当然像镜头特性最本质的原因的介绍也是很少。既然业余喜欢这行,也就希望能够明白一些原理,纯属兴趣,于是笔者摘录一篇外文网站对T*镀膜及多层镀膜的介绍(via http://www.myoptica.com/helpar.cfm),文中主要针对的还是T*镀膜对望远镜和放大镜的作用,当然对摄影镜头也是如此。

  When buying an optical instrument, it's easy to overlook one very important feature – the coatings on the surfaces of the lenses and prisms.

  The difference between a magnifier or scope which gives fuzzy, double, or "haloed" images, and one which gives bright, crystal clear viewing in all types of light conditions, is very often a matter of the quality of its lens coatings.

  Zeiss pioneered the development of multi-layer anti-reflective coatings over 65 years ago. Today, the Zeiss T* process is the most technically advanced in the consumer optics industry, producing lenses and prisms which transmit more than 99.5% of the visible light which strikes them.

  蔡司在65年前就已经发明多层抗反射膜,T*镀膜可以透过99.5%的可见光。

  What "reflections" are you talking about, and why are they a problem?

  Whenever a beam of light encounters a transparent pane of glass or a magnifier lens, a small fraction of the light is reflected at the surface, as if the glass were a mirror. We've all experienced this phenomenon, when we see our reflection in a plate glass store window, or are temporarily blinded by a reflection of the sun from the rear window of the vehicle ahead.

  Interestingly enough, there is actually one reflection from the front surface of the glass when the light enter it, and another, almost equal reflection from the far side of the glass when the light comes out again! If the light is hitting the glass straight on at a 90° angle, about 4% of the incoming light will be bounced back from the front surface, and another 4% from the back surface. If the light is striking the glass at a glancing angle, like 30° for example, the reflection can be 10% or more from each surface.

  当光线经过一块玻璃时,光线会在玻璃的前后表面发现一部分反射。如果入射光角度为90度,则在前后玻璃表面发生4%的反射,如果入射角度为30度,那么会有10%多的光线被反射。

  Now an 8% reflection (4% from the front surface, 4% from the back) may not sound like much, but when you are looking though the lens of a magnifier, this small percentage of light, reflected from the bulb of a desk lamp for instance, can create a bright "highlight" that seems to float and move as your hand moves the magnifier. This reflection detracts significantly from your eye's ability to see the printed text or the tiny features behind the lens that you are trying to examine; in particular, it tends to interfere with the eye-brain process which allows you to keep an object in focus.

  If there are multiple light sources in the room – say half-a-dozen fluorescent fixtures in the ceiling – each one can create a reflected image on the surface of an uncoated magnifier lens. The result is that you will have a very difficult time seeing clearly … which was really the whole point of using a magnifier in the first place.

  8%的光线反射可能对人眼影响不大,但是在相机上就是另外一回事。到了一个光线更为复杂的室内环境,结果将更为糟糕。

  So what can be done about these spurious reflections?

  We can treat the surface of the glass or plastic to prevent most of the reflections from occurring. The first practical anti-reflective coating technology was patented by the Carl Zeiss company in 1935. It consisted of a number of super-thin layers of a metallic salt (magnesium fluoride) which are vapor deposited onto the lens surfaces in a vacuum chamber. Each layer is only about 5 millionths of an inch (14 millionths of a centimeter) thick.

  世界上第一个可以使用的抗反射镀膜技术是蔡司公司在1935年注册为专利。镀膜是由很多超薄的金属盐(氟化镁)层构成,金属盐是在真空腔中通过蒸汽方式附着在镜头表面。每个涂层只有500万分之一英寸厚(1/14000000分米)。

  This stack of transparent layers, by taking advantage of the wave-like properties of light, trap the reflected light energy and redirect it back along the original path. The result is that only about one-half of one percent of the visible light is lost.

  这种镀膜能够阻挡反射光能量并让其按原来的光线途径行进,结果是大概只有0.5%的可见光损失。

  Over the years, this multi-layer vapor deposition technology has been refined and perfected with new materials and more precise processes, yielding perfectly uniform, durable anti-reflective coatings for all types of personal optics. Anti-Reflective coating is a much-requested and highly appreciated feature on world-famous Zeiss spectacle lenses.

  多年来这种多层蒸发涂层技术在个人镜头上的应用被不断改进,包括新材料、更精确的加工过程、统一化以及耐久性。多层镀膜技术是蔡司公司的骄傲。

  In fact, all Zeiss folding pocket magnifiers, monocular telescopes, and binoculars now come standard with these trademark T* coatings. These coatings are greatly responsible for the famous image brightness and clarity of Zeiss sports optics, since every binocular has anywhere from 6 to 10 glass-to-air transitions inside, each of which would steal away a few percent of the limited light energy from the image if they were not coated with Zeiss T*.

  实际上蔡司所有的望远镜和放大镜都进行标准的T*镀膜。这些镀膜让蔡司的运动镜头得到了很好的亮度和清晰度,因为双筒望远镜都有6-10片镜片,如果不镀T*镀膜,可能就要损失很大部分的光线。

  Do I need T* Anti-Reflective coating on my Zeiss handheld magnifier?

  As for Zeiss' line of handheld magnifying glasses, you have a choice whether to purchase the unit with or without this AR (anti-reflective) coating. If you only use a magnifying glass occasionally, and if you use it in an environment where you can control the position and brightness of the lamps or the amount of sunlight that streams in through the windows in the room, then you may not be too disturbed by these surface reflections. In this case, you might find that an uncoated lens is sufficient to meet your needs.

  However, if you use a magnifier constantly, to help you overcome a vision problem, or as a tool of your profession, or if you must often use a magnifier in a library, laboratory, shop, or other location where you cannot control the lighting conditions, you should definitely consider choosing the "-AR" version when ordering your Zeiss magnifier. An AR-coated lens will give you a noticeably clearer image from the moment you pick it up. Moreover, as you continue to use it over many minutes, even into several hours, you will experience more ease in viewing with much less fatigue and distraction.

  The bottom line is … Zeiss Multi-Layer Anti-Reflective coating is a small investment which will pay huge dividends in viewing clarity and comfort.

  总之,蔡司多层抗反射镀膜对消费者个人来说是小投入,但是可以带来很大的惊喜。

 

Planar (普兰纳镜头)

  来自WIKIPEDIA对Planar结构的介绍:

Planar结构

  标准广角到135mm中望远的镜头设计,是6片四组镜头的全对称高斯式,起初只有f/4.5。今日主流的Planar镜头已作到f/1.4。最大曾做到过f/0.7。Planar的特点是色差修正完善,对称设计,变形极低。Planer为保罗·儒道夫于1896年所设计。

  The Zeiss Planar is a photographic lens designed by Paul Rudolph at Carl Zeiss in 1896. Rudolph's original was a six-element symmetrical design.

  While very sharp, the lens suffered from flare due to its many air-to-glass surfaces. Before the introduction of lens coating technology the four-element Tessar, with slightly inferior image quality, was preferred due to its better contrast. In the 1950s, when effective anti-reflective lens coatings became available, coated Planars were produced with much-improved flare. These lenses used the Zeiss T* coating system, which had been invented in 1935. They performed very well as normal and medium-long focus lenses for small and medium format cameras. One of the most notable Planar lenses is the high-speed f/2.0/110 mm lens for the 2000- and 200-series medium format Hasselblad cameras.

  对于Contax Zeiss Planar T* 1.7/50的优缺点,各个论坛都有不少介绍。简单来说就是对低光的色彩表现好,锐利,但是手动调焦,有塑料材质,无三防。

  本人也是第一次接触手动头,拍静物上脚架并配上450D的Liveview对焦,图像还是清晰锐利,色彩饱和,如果手持拍摄,眼力很重要,当然也可以直接小光圈无限远对焦后,抓拍的优势就体现出来了。以下是两张室内拍摄的静物,第一张1.7的光圈,第二张2.8的光圈,DPP直出。红木地板还是能体现Contax Zeiss Planar T* 1.7/50的表现力,后来对比了下Canon 50/1.8 II的图像,发现两者色彩相差不大,但是在暗部细节过渡上Contax Zeiss Planar T* 1.7/50更有优势。当然,本人也是刚接触这镜头,可能在一些特殊环境下Contax Zeiss Planar T* 1.7/50会有更出彩的表现。另外,小痰盂很不错,自动对焦,600元的价格,这性价比太高了。最后还是那句老话:镜头后面的头永远是最重要的。

450D+Contax Zeiss Planar T* 1.7/50+F/1.7

450D+Contax Zeiss Planar T* 1.7/50+F/1.7

 

 

450D+Contax Zeiss Planar T* 1.7/50+F/2.0

450D+Contax Zeiss Planar T* 1.7/50+F/2.8

 

附:蔡司镜头年表

  大約是在 1970 年代,德國 Zeiss 為了與日本興起之平價單眼相機廠(如 Pentax 和 Nikon…等)抗衡;於是分別和日本電子大廠 Yashica 和德國工程領域 F.Alexander Porsche 合作,共同發展其單反規格卡口,稱為 CONTAX/YASHICA 接口(簡稱 C/Y 接口)。

  但傳聞 Zeiss 也曾經和 Pentax 有 某些合作關係,不過並沒有相關明確文件或資料,無法考據…。

  C/Y 系統在其發展其間有兩個極重要的時間點:1974 和 1985 年。

  (1) 974 年 Contax RTS 問世立即成為經典,而 C/Y 接口鏡頭也隨即在 1975 年始量產;而此時期所生產的 C/Y 接口鏡頭也就是慣稱的 AE 鏡。AE 意為裝置在電子機身時只能光圈優先或全手動操作。辨識方法為最小光圈為白色字體。   

  (2) 1985 年強大的 Contax 159MM 發表,為配合其程式曝光功能,Carl Zeiss 推出了新型的光圈控制耦合,在鏡頭有一個小凸出讓機身偵測;允許機身在程式或快門優先方式下,由照相機來設定鏡頭上的光圈值。此後所生產的 C/Y 接口鏡頭也就是慣稱的 MM 鏡,並採用輕型的光圈葉片元件。辨識方法為最小光圈為綠色字體。

  (3) 德鏡與日鏡則在光圈環下方標示:Lens made in West Germany 或 Lens made in Japan。但也有極少數鏡款因特殊用途或無光圈機構而只標示為 G 或 J ,如:S-Planar T* 100mm/F4 只有註記為 G 鏡。Mirotar T* 500mm/F8 只有註記為 J 鏡。而且 AE 與 MM,G 鏡與 J 鏡也有重疊年份生產的情況。

  (4) 蔡司 CONTAX/YASHICA 鏡頭年表:以下如謬誤,還請不吝指正,謝謝。

  Distagon T* 16mm F2.8 ————AEG75~92、MMG93~01

  Distagon T* 15mm F3.5 ————AEG75~92、MMG93~01

  Distagon T* 18mm F4.0 ————AEG75~87、MMG86~89、MMJ90~01

  Distagon T* 21mm F2.8 ————MMJ94~01

  Distagon T* 25mm F2.8 ————AEG75~87、MMG86~89、MMJ90~01

  Distagon T* 28mm F2.0 ————AEG75~87、MMG86~89

  Distagon T* 28mm F2.8 ————AEJ75~87、MMJ87~01

  Distagon T* 35mm F1.4 ————AEG75~87、MMG86~89、MMJ90~01

  Distagon T* 35mm F2.8 ————AEJ75~87、MMJ85~01

  PC-Distagon T* 35mm F2.8 ———AEG81~92、MMG93~01

 

  Tessar T* 45mm F2.8 ————–AEJ83~87、MMJ93~01

  Tessar T* 45mm F2.8(100 Jahre)–MMJ01(註:銀色鏡頭,口徑改 46mm 以利更小型化)

  Planar T* 50mm F1.4 —————AEJ75~87、MMJ85~01

  Planar T* 50mm F1.7 —————AEJ79~94、MMJ86~01

  Planar T* 55mm F1.2(100 Jahre)—MMG92

  S-Planar T* 60mm F2.8 ————-AEG78~89

  Makro-Planar T* 60mm F2.8———AEJ90~01

  Makro-Planar T* 60mm F2.8 C——-MMJ93~01

 

  Planar T* 85mm F1.2(50 Jahre)—-AEG82

  Planar T* 85mm F1.2(60 Jahre)—-MMG92

  Planar T* 85mm F1.4—————-AEG75~89、MMG86~89、MMJ90~01

  Sonnar T* 85mm F2.8—————AEG75~89、AEJ83~87、MMJ85~90、MMG98~01

  Planar T* 100mm F2.0—————AEG80~89、MMG86~89、MMJ96~01

  Sonnar T* 100mm F3.5————–AEJ83~91、MMJ85~89

  S-Planar T* 100mm F4.0 Bellow——G78-85

  Macro-Planar T* 100mm F2.8——–AEG86~89、MMJ90~01

  Planar T* 135mm F2.0—————AEG75~89、MMG86~89

  Planar T* 135mm F2.0(60 Jahre)—MMG92

  Sonnar T* 135mm F2.8————–AEJ75~87、MMJ85~01

  Sonnar T* 180mm F2.8(胖胖鏡)—–AEG79~82 (註:沒有內建遮光罩)

  Sonnar T* 180mm F2.8————–AEG83~87、MMG87~89、MMJ90~01

 

  Apo-Sonnar T* 200mm F2.0———-MMJ94~01

  Tele-Tessar T* 200mm F3.5———-AEG75~92、MMG86~90

  Tele-Tessar T* 300mm F4.0(舊)—-AEG79~82

  Tele-Tessar T* 300mm F4.0———-AEG83~86、MMG87~89、MMJ90~01

  Tele-Apo Tessar 300mm F2.8———AEG 86~87、93~96、98~00

  Tele-Apo Tessar 500mm F5.6———受注生產

  Tele-Apo Tessar 800mm F8.0———受注生產

  Mirotar T* 500mm F4.5—————G75~97

  Mirotar T* 500mm F8.0—————J97~01

  Mirotar T* 1000mm F4.5————–G75~94

 

  Vario-Sonnar T* 28-70mm F3.5-4.5——-MMJ97~01

  Vario-Sonnar T* 28-85mm F3.3-4.0——-MMJ89~01

  Vario-Sonnar T* 35-70mm F3.4———–MMJ86~00

  Vario-Sonnar T* 35-135mm F3.3-4.5——MMJ93~01

  Vario-Sonnar T* 40-80mm F3.5———–AEG78~88

  Vario-sonnar T* 70-210mm F3.5———-AEG80~88

  Vario-Sonnar T* 80-200mm F4.0———-MMJ86~01

  Vario-Sonnar T* 100-300mm F4.5-5.6—–MMJ96~01

 

  Mutar I T* 2X————–AEJ86~01

  Mutar II T* 2X————-AEJ86~01

  Mutar III T* 1.4X———-AEJ97~01

 

参考帖子:

  (1) Carl Zeiss Planar T* 50/1.7 交流区  http://forum.xitek.com/thread-448167-1-1-1.html
 
  (2) 想搞清楚镜头的味道,油润,空气感的物理原因  http://forum.xitek.com/thread-545388-1-1-1.html
 
  (3) 蔡司宅男各种烧 Contax/Zeiss【蔡司主题帖汇总】  http://forum.xitek.com/thread-927263-1-1-1.html